

Solar sail-driven nanosatellite constellation for Sun activity monitoring

Author: Ekaterina Timakova, BMSTU graduate e-mail: timakova.bmstu@mail.ru

Solar research: big satellites vs CubeSats

Advantages :

- precise equipment;

- detailed scientific data;

- multiple operating features.

Disadvantages of big satellites:

- high manufacturing complexity and costs;
- long waiting for launch.

Benefits of a constellation:

-

- high redundancy and replaceability;
- non-stop monitoring;
- fast and easy to launch;
- low cost.

The «Yareelo» experiment

Purposes:

- Scientific research of the Sun;
- Demonstration of a nanosatellite constellation formation by means of the solar sail.

<u>Tasks:</u>

- to launch two 1,5 U CubeSats in one P-POD;
- to distance the nanosatellites to enable non-stop monitoring the Sun (required angular distance: 140...180°);
- to register the solar activity;
- to prove the possibility of a long-term nanosatellite group flight;
- to deorbit the nanosatellites at the end of their service life in a passive mode (by deploying the solar sail).

X-ray Spectrophotometer

Functional area:

- Receiving non-stop and quick information about solar activity;
- Space weather forecasting;
- Registering of the solar flares (0.5-15 KeV).

Spectrophotometer developed by physical institute of Russian Academy of Science (on base of the Ketek Technology)

Device technical features:

- Power consumption: 0,35 W;
- the accuracy of orientation in the Sun: 1-2°.

Sensitivity of the developed detectors is expected to be equal to SphinX device.

Two-blade rotary solar sail

Solar Sail Unit in vacuum

1U CubeSat mock-up with the Solar Sail Unit onboard

BMSTU Sail

Mass, kg	1	Mass, kg
Dimensions, mm (sail is folded)	100x100x100	Dimensions, mm folded)
Sail max length, m (two blades, total)	10	Sail max length, (two blades, tot
Sail material characteristics	ristics NIIKAM aluminized polyimide 12um thick	Sail max width, r
		Average energy consumption, W
Sail max width mm	50	Energy consump sail deploying/fc
	00	
Initial orbit	400 km LEO	
Launch year	2019	

Solar Sail Unit

0,30
90 x 96 x 38
20
70
0
1,2 (up to 15 min)

Constellation formation process

- Launching from the P-pod
- Initial orientation

〔2)

3

5)

- Solar panels deploying
- Spinning with magnetic coils
- Solar sail deploying from the first nanosatellite
- Aerobraking maneuvering
- Operational flight with the constant
 angular distance between CubeSats
- Sun activity monitoring
- Communication sessions with the ground control station

Ballistic calculation

 $\ddot{\vec{X}}(t) = \frac{\vec{F}}{m}$

- $\ddot{\vec{X}}(t)$ coordinate vector;
- *m* satellite mass;

 $\vec{F} = \vec{F_g} + \vec{F_a} + \vec{F_s}$ – force vector of:

- $\vec{F_g}$ force of gravity (ellipsoid WGS-84, 20 zonal harmonics);
- $\vec{F_a}$ atmospheric drag force (atmospheric model NRLMSIS-00);
- $\overrightarrow{F_s}$ solar pressure power.

Integration by Runge-Kutta method (4th order)

Optimized parameters	<u>(max service life</u>	
and constellation formation life)		
Altitude:	500 km	
Sail length:	10 m	
Constellation formation :	71 days	
Satellite's service life:	> 3,5 years	

Assumptions:

- Satellite orientation is constant in inertial space;
- The gravity of the Sun and other planets are not taken into account;
- -sail stays undeformed during the mission.

Dependence of the main time parameters of the sail length (initial altitude 500 km)

Solar sail length, m

Dependence of the main time parameters of the initial altitude (sail length10 m)

Functional chart

Unified microcontroller

- Regulated power(3,3; 5,0 V) for internal circuits
- Control of all operating modes of a sail
- Full-redundancy
- One failure in any component tolerance

Technical experiments

Testing in vacuum

Solar panels vibrations

Communication system testing

Power supply system testing

Attitude control system testing

Attitude control simulations

Thermal simulations

External structure's temperature field

Internal structure's temperature field

Conclusions

- Newly developed concept of constellation formation by means of solar sail
- Newly developed algorithms of orientation
- Newly designed structure and avionics
- Newly written software for ballistic calculation
- Newly developed X-ray detector for monitoring of solar activity

Thank you for your attention

Website: bsail.ru

Instagram: baumansail