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Research goal
Determination of light radiation pressure upon a space structures with complex geometry.

Millimetron / ASC of Physical Institute of RAS JWST / NASA
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Light pressure



Infinitesimal light pressure force

Major assumptions:
@ Transmittance is not considered;

3 @ Reflectivity can be both specular or
diffuse or both;

@ Diffuse reflection can be Lambertian,
or other axis-symmetric dispersion law
can be considered;

@ Temperature is constant in the normal
direction;

@ The light flux is parallel;

@ No self-shadowing and no secondary
reflections;

@ The structure is optically convex.
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The infinitesimal light pressure force

aF = [_ﬂA

” n— (1—ps)(h-8)s+ p(1 —S)B(ﬁ~§)ﬁ—2ps(ﬁ~§)2ﬁ:| dA, (1)
0

after defining of ag, ay, a;, as,

c

dF = P(R) [—aoﬁ — ay (it )8 + ax (i - 8)i — 2a3 (i - é)zﬁ] dA. @
The moment from infinitesimal light pressure force:

dM =r x dF. @)



Tensor representation

Let us introduce the visibility function (similar to D.J. Scheeres and L. Rios-Reyes’):

A —|h- g

(i, 8) = 5 (4)
Eq. (2) can be rewritten with visibility function:
dF = @ ( — Dagh — ay (- §)3 + ax(A - ) — 2a3( - §)h + a1 [A - 88
—a|fi - §|f + 2a3 (i - §)[f - §|ﬁ)dA. (5)
Asfaras i -§ € [—1; 1], the |fi - §| can be represented as a series of Chebyshev polynomials of
the first kind:
A 2 4 & )T, (2 - s)
8 -8 Toow ; —1 +4n?
oo n—1
4 Z ( 1 R ( —k— 1) 4n—k(ﬁ . §)2(n—k). (6)
il 1+4n)k'(2n 2k)!
After transformations (6) can be written in simplified form:
-8 =" Bu(h-8)™, 7
m=1
where -
__1\mgqm+1 — 1!
Bm:f( 1)"4 n(n+m—1) ®)

w(2m)! (=1 +4n2)(n — m)!’

" Rios-Reyes, L. and Scheeres, D. J. Generalized Model for Solar Sails, Journal of Spacecraft and Rockets, 42 (1), 2005,
pp.182-185.
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The series (8) diverge, but in the final summation (7) the divergences are regularized (it can be
simply proven since the original series expansion is convergent). We will limit the number of
terms in (7) by Nmax, the upper bound for (8) will be

Nmax - IJ

Nmax B = \‘ )

where |x] is a floor function of real x.

Convergence of approximation
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Figure 1: Different approximation rank for | - §|
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Tensor series for F

Let us substitute Eq. (7) into Eq. (5):

P(R
dF = (2)(—2a0f1—al(ﬁ~§)§+a2(fl-§)ﬁ—2a3(ﬁ~§)2fl+
Nmax dex Nmax
S e DL R SO )dA. ©)
m=1 m=1
Extending the approach of D.J. Scheeres and others, we can introduce the new shape tensors:
P A Ay 4 ~ ~ AN A ~ +1 4 Al
(h-§)...(A-H=MQI®...QN)-§-...-§=T7" -§-...-§;
r p+1 r P
(h-§)...(A-8)Ss=AOA®.. . @AREY) §-....§=T017.5... 5.
N—_—— N—_——
P 4 p+1 p+1

After rewriting of Eq. (9) in the tensor notation:

P(R
dF:—(2)(—2a0ﬁ—aljg~§.s+a2;7§.§—2a3;7§.§~§+

Nmax Nmax
a Z BT $8-w Z BuJ2m 5. §+
2m+1 2m
Nmax
2a3 ) BuJ" P8 ~§)dA. (10)
m=1 2mA4-1



Tensor series for F

By grouping of terms in (10) we can write the equation for infinitesimal force of light pressure
falling only to the front side:

Nmax
F = P(R 1 ".§....-8§ )dA 11
a ()(J+;Js ]s)d, (1)
where
jl = —qpn; (12)
1
J* = Eaziff; (13)
1
T} = 5 ( —a1J; = 2a3T; — Blazjj); (14)
1 1—(=1)" 14 (=1)"
J" = 7(73,,_17( V' o7y 4 By LY (013£+2a3~7/1’)): n>3; (19
2 2 2 2 2
Ji=h®.. . Qh (16)
N e’
TF=0Q... a®E? (17)



Tensor series for M

Providing the same procedure for the moment:

PO Lo (P2 P S o2 Ay s P P+l & .
n-8)...(A-8)(R°-1) = (AQAR...QL® n)-§ s -8 $
P P P P
((h-8)...(0-8)(R*8)=HQA®...0nQR?) -§-...-§ =L 5. .. .3
— ——— ~— ——

p P p+1 p+1

we can also represent the Eq. (9) as a tensor series:

P(R .
dM =r x dF = R? . dF = ()(—2a0732~ﬁ—alcg~s~§+a2£§~s—
Nmax Nmax
2305 -8 8+a1 Yy Buly" 8 §—ar Y BuLl"T 88+
m=1 2m+1 m=1 2m
Nmax
2m+2 A A
2a3 Y BuLy" ~s~...~s)dA, (18)
m=1 2m+1
where
Li=R®.. "R i (19)
n—1
LL=h®.. @0aeR? (20)
n—2
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Tensor series for M

The tensor series for M will be as the follows:

_ 1 gL n a4 a
dM_P(R)(L +;c -s-_';.’.l_-g)dA, (21)
where
L' = —ap(R* - h); (22)
o= %azgg; (23)
L= %(fmﬁ% —2a3L3 fBlalei); (24)
L= %(—anlLz_l)nagﬁz-l-B%w(alﬁg-l-Zagﬁﬁ)), n>3; (25)
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Resulting equation

By integrating of (11) and (21) over the whole surface A, we can get the resultant force and
moment upon an optically convex structure:

Nmﬂx
F=PR) (I 7" §-...-8 );
( )(I +>018 s), (26)
n=2 n—1
Nmax
M =PR)(K! K'-§-...-8 27
( )( +§ § s), 27)
- n—1
where
7= / FrdA; (28)
A
K= / L'dA, (29)
A
wheren > 1.

It is possible to write the same relations considering self-shadowing and secondary reflections?.

2Nerovny, N.A. et al. Representation of light pressure resultant force and moment as a tensor series // Celestial Mechanics
and Dynamical Astronomy. [Approved for publication]
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Analytical examples



In the analytical examples below the light source orientation vector s is defined by two angles «
and 3 as follows:

@ a € [0,2x] — angle between unit vector €, of axis Ox; and projection of vector § on the

plane Ox;x3;
@ 3 € [-7; 5] — angle between plane Ox;x; and vector §.

The components of vector § can be written as follows:

§ = (cos arcos 3, sin B3, sin o cos B)7.
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The front side (side 1) has reflection coefficient p; and specularity parameter s;. The other side
(side 2) has reflectivity p, and specularity s,. The area of the solar sail is A.
Components of tensors Z and K:

I=A(J@y,p1,81) + T (M2, p2,52)) 3
K =A(L(>1,r1,p1,51) + L2, 12, p2,5)) 5
=(0,0,1)7
fiy = (0,0, —1)7
r =r; = (0,0,0)7.
Resultant force and moment (Npax = 6):

Fi = P3(§) (=6(=2+ p151 + p2s2) + cos Bsina (157 (p151 — p2s2)+
+8(—=2+ p151 + p2s2) cos Bsina (79 + 4 cos? B sin’ a))) cos acos B;

Fy = P3(§T)FA (=6(—2+ p1s1 + pas2) + cos Bsina (157 (p1s1 — pas2)+
+8(—=2+ p151 + p2s2) cos Bsina (—9 + 4 cos? B sin’ a))) sin 3;

F3= P9(0) (24(p2(1 = 52) — p1(1 = s1)) +cos Bsina

(6(57(p1(1 —51) + p2(1 = $2)) + 3(2 + p151p252)) + cos Bsincx
(=9(16p1 (1 — s1) + 57p1s1 — 16p2(1 — 52) — 57pasz) + 8cos Bsin«
(272 + prsi + pas2) + 4cos Bsina(2(pr (1 — 1) — pa(1 — 52))
=3(2 + p152 + p252) cos Bsina))))) ;

M=0.
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Flat solar sail, Nmax = 6, p1 = > , 81 =85 =1

Figure 2: Projection on Ox; (a) and on Oxs (b) of resultant force of light pressure upon two-sided specular
solar sail with unit area, Nynx = 6, p1 = 1, p2 = 0, 51 = s» = 1. Solid line — approximate solution, dashed line
— exact solution. Values are divided by P(R).
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Flat solar sail, Nmax =6, p1 = 1,00 = 0,51 =5, =0
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Figure 3: Projection on Ox; (a) and on Oxs (b) of resultant force of light pressure upon two-sided diffuse solar
sail with unit area, Nmax = 6, p1 = 1, p2 = 0, 51 = s, = 0. Solid line — approximate solution, dashed line —
exact solution. Values are divided by P(R).
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Let us consider a sphere of radius R, with a homogeneous specular-diffusive surface, the
reflection coefficient of which is equal to p and the degree of specular reflection is s.
The expressions for the components of tensors Z and K:

z
/ J (8, p, 5)d0de;

z
K= R%/ / LR, r, p,s)d0de;
0

i = (cos ¢ cos 0, sin ¢ cos 0, sin 0) ;

r = (Rp cos ¢ cos 6, Ry sin ¢ cos 6, Ry sin H)T .

The analytical expressions considering Nmax = 6:

4
Fi = P(R)—— (175mp(1 — 5) + 3(413 4 ps)) R3 cos a cos f;

1575
4
F = P(R)ﬁ (1757 p(1 — s) + 3(413 + ps)) R} sin B;
4
F3 = P(R)ﬁ (175mp(1 — s) + 3(413 + ps)) R} cos Bsin o

M=0.
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Ideally specular sphere

Forp=1and s = 1 we get:
F) = P(R)7R3 cos o cos B3; (30)
F) =~ P(R)7R3 sin 3; (31)
F3 = P(R)7R3 cos B sin cv. (32)
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Cylinder

Let us consider the cylinder with following parameters:
@ po — reflectance of the envelope;
p1 — reflectance of the butt surface +x3;
p,» — reflectance of the butt surface —x3;
so — specularity coefficient of the envelope;
s1 — specularity coefficient of the butt surface +x3;
so — specularity coefficient of the butt surface —xs;
R — radius of the cylinder;
H — height of the cylinder.
The expressions for the components of tensors Z and K:

27
T = J (1, p1, 1) 7R, + T (2, pa, s2) 7R} + HR, / J (R, po, $0)de;
0

27
K = L@, o1 51)7RE + Ll v p2052) 78+ HRy [ £, 5o, o500
0

A =(0,0,1)";

Ay = (0,0,—1)%;

ny = (cos ¢, sin ¢>,0)T;

r = (0,0,H/2)T;

r; = (0,0,—H/2)7;

ro = (Ry cos ¢, R; sinqb,O)T.
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Specular-diffuse cylinder

For the number of terms of the series Nmax = 6 we can get:

P(R)R
F| = (3()) ! cos avcos B(—8H (3 + 2ppso) cos* o cos* B+

+ 4H cos® accos? B(12 + 5ppso + (6 + 4pysy) cos 28)+

+ Ry cos Bsina(157(pys1 — pasa)+

+8(=2 + p151 + pas2) cos Bsin (—9 + 4 cos’ Bsin” &) )+

+2(H(6 — 5mpo(—1+s0)) — 3R (=2 + p1s1 + p2s2)+

+ 2H(15 4 Tposo + (3 + 2ppso) cos 23) sin® B8));

P(R)R,
30

+ 4H cos? o cos? B(12 + 5p0s0 + (6 + 4poso) cos 23)+

+ Ry cos Bsina(157(pys1 — pasa)+

+ 8(=2 + p151 + p2s2) cos Bsin (—9 + 4 cos’ Bsin” &) )+

+2(H(6 — 5mpo(—1+ s0)) — 3R (=2 + p1si + p2s2)+

+ 2H(15 4 Tposo + (3 + 2pso) cos 23) sin® B));

Fy = sin B(—8H (3 + 2p0s0) cos* a cos* B+
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Specular-diffuse cylinder

P(R)R
90

F3 (24R1(p2(1 —Sz)—pl(l —S]))+

3
+ g cos B(=363H(—14 poso) + 16R (57(p1 + p2 — p151 — p2s2)+
4+ 3(2 + p1s1 + p2s2)) + 3H(—1 + poso) (44 cos 23 + 5cos4f)) sin ae—
—9R; (p1 (16 4+ (—16 4 57)s1) + 16p2(—1 + 52) — Swp2s7) cos® Bsin® a+
+ 64R (p1 — p1s1 + p2(—1+ 52)) cos* Bsin® a+

9
+ 1 cos® B(96R (2 4 p1s1 + pasa) sin® o — H(—1 + pgso)(13 + 5cos 28) sin3a)+

3
+ 3 cos® B(—64R| (2 + pis| + pasy) sin® o + 3H(—1 + pyso) sin5ar));

P(R)HR? )
M, = T(ép]sl — 6p252 + cos Bsina(15m(—2ppso + p151 + p2s2)+

+ 8(p1s1 — p2sy) cos Bsin a(—9 + 4 cos® Bsin® «))) sin B;

P(R)HR} .
M = T(*ﬁpm + 6p252 + cos Bsin a(157(2p050 — p151 — p2sa)+

+ 8(p151 — pasa) cos Bsin (9 — 4 cos? Bsin® a))) cos a cos B;
M; = 0.
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Specular-diffuse cylinder, Nimax = 6, p1 = p2 =0, p0 = 1,51 =50 =0, 50 = 1

Figure 4: Projection on Ox; (a) and on Ox; (b) of resultant force of light pressure upon specular-diffuse
cylinder, Npax = 6, p1 = p2 =0, po = 1, 51 = 52 = 0, 50 = 1. Values are divided by P(R).

Figure 5: Projection on Ox; of principal moment of light pressure upon specular-diffuse cylinder, Npax = 6,
p1=p2=0,py=1,51 =5, =0,50 = 1. Values are divided by P(R).
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Numerical method

24

52



Method definition

Main idea: approximation of shape tensor components using known values of force

£() = ¥() /P(R) and moment m() = M) /P(R) for the set of known orientation vector §) in a
number N. ~ ~

The approximated values for shape tensors components Z" and K":

T
J = 7117|217§17§17%11---713‘4‘.A3|721---7\%‘/[‘“327\%---7%“3 > (33)
[(%(3”*1))><1] N — N—— N~
M—1 M—1 M
T
) = | KIKL KL KKy - RS 5Ky RY K5 KY 5 (34)
[Ger=n)x] Lo
M—1 M—1 M
where M = Nmax.-
Vector of free terms:
1) (2 N) (1) (2 N) (1) (2 W\
by = A7 OB RY VRO ) (35)
1 @ N) (1) (2 N) (1) (2 M\T
[3]\1}1)1(1] = (mg )mi )mg >m§ )mg )mg >m§ )mg )...mg )) . (36)

Matrix of orientations:

N
rx(3@-0)
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Least squares approximation

The resolving equation for f and m are overdefined:

Sj="1;
Sk = m.

j and k are approximated by j and k using least squares method:

115§ — £||> = min, j = (s78) " s7E;
ISk — m|[> — min, k = (575)" §"m,

where T is a pseudo-inverse operator.
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Model spacecraft
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Millimetron Space Telescope

>

N
_—

Figure 6: Millimentron space observatory concept. 1 — Sun shields; 2 — Cryo-shield; 3 — Primary mirror’s petal;
4 — Secondary mirror; 5 — Central part of Primary mirror; 6 — Cryo-container; 7 — Heat exchanger (radiator); 8
— Warm container; 9 — Sunshields supporting truss; 10 — Adapter ring; 11 — Service module; 12 — Solar power

array; 13 — High gain antenna.
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Geometrical model

Solar arrays
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Figure 7: Geometrical model of Millimetron space observatory.



Raytracing results

Raytracing results, specular and diffuse cases (1000000 rays), Tracer®

a, b — diffuse cases; ¢, d — specular cases.

3Leonov, V.V. Radiation heat transfer in mirror concentrator systems, PhD Thesis, 2012 (in Russian).
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Specular case
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Specular case, absolute values, Nyax = 2

Figure 8: Dependency of the absolute value of resultant force and moment of light radiation pressure from the
angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Nm.x = 2), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is specular.
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Specular case, absolute values, Nya.x = 3

Figure 9: Dependency of the absolute value of resultant force and moment of light radiation pressure from the
angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Nm.x = 3), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is specular.
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Specular case, absolute values, Ny = 4

Figure 10: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 4), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is specular.
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Specular case, absolute values, Nyax = 5

Figure 11: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 5), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is specular.
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Specular case, absolute values, Nyax = 6

Figure 12: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 6), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is specular.

37/52



Specular case, projections
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Figure 13: Approximation results (Nmax = 6) for principal force (a, c, €), N, and for principal moment (b, c, f),

N - m, of light radiation pressure depending
line) comparing results of Monte—Carlo sim

on angle of rotation of light source in the plane of radiators (solid
ulations (dots). The results in subfigures b, c, and f are non-zero

because of random noise. The dotted values were not used in the construction of approximation. Specular

case.
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Diffuse case
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Diffuse case, absolute values, Np,x = 2

Figure 14: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 2), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is diffuse.
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Diffuse case, absolute values, Ny,x = 3

Figure 15: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 3), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is diffuse.
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Diffuse case, absolute values, Nm.x = 4

Figure 16: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 4), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is diffuse.
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Diffuse case, absolute values, Ny,x = 5

Figure 17: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 5), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is diffuse.
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Diffuse case, absolute values, Ny.,x = 6

Figure 18: Dependency of the absolute value of resultant force and moment of light radiation pressure from
the angle of rotation of light source in the radiators plane. Solid line — tensor approximation (Ny.x = 6), dots —
Monte—Carlo simulation results which were not used for the approximation. Figure a — absolute value of
resultant force, N; Figure b — absolute value of the resultant moment, N - m. The whole surface is diffuse.
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Diffuse case, projections
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Figure 19: Approximation results (Nmax = 6) for principal force (a, c, e), N, and for principal moment (b, ¢, f),
N - m, of light radiation pressure depending on angle of rotation of light source in the plane of radiators (solid
line) comparing results of Monte—Carlo simulations (dots). The results in subfigures b, c, and f are non-zero

because of random noise. The dotted values were not used in the construction of approximation. Diffuse case.
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Specular-diffuse case

Specular-diffuse case
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Specular—diffuse case, s = 0.75
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Figure 20: Approximation results (Nmax = 6) for principal force (a, c, €), N, and for principal moment (b, c, f),
N - m, of light radiation pressure depending on angle of rotation of light source in the plane of radiators (solid
line) comparing results of Monte—Carlo simulations (dots). The results in subfigures b, ¢ and f are non-zero
because of random noise. The approximation was constructed as a linear combination of specular and diffuse
cases. Specular—diffuse case, s = 0.75.
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Specular—diffuse case, s = 0.5
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Figure 21: Approximation results (Nmax = 6) for principal force (a, c, €), N, and for principal moment (b, c, f),
N - m, of light radiation pressure depending from angle of rotation of light source in the plane of radiators (solid
line) comparing results of Monte—Carlo simulations (dots). The results in subfigures b, ¢ and f are non-zero
because of random noise. The approximation was constructed as a linear combination of specular and diffuse
cases. Specular—diffuse case, s = 0.5.

48/52



Specular—diffuse case, s
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Figure 22: Approximation results (Nmax = 6) for principal force (a, ¢, e), N, and for principal moment (b, c, f),
N - m, of light radiation pressure depending from angle of rotation of light source in the plane of radiators (solid
line) comparing results of Monte—Carlo simulations (dots). The results in subfigures b, ¢ and f are non-zero
because of random noise. The approximation was constructed as a linear combination of specular and diffuse
cases. Specular—diffuse case, s = 0.25.
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Conclusions and future plans

Conclusions
@ The presented model can describe the SRP of complex space body.
@ In the model the geometrical and optical parameters of structure are analytically divided
from the attitude towards the sun.

@ If the bodies .4 and B are both optically convex, as well as the their composition A+ B = C,
the components of shape tensors for C can be calculated as a simple sum of corresponding
components of shape tensors for A and B.

Future plans
@ Dynamics around the center of inertia under SRP moment. Optimal stabilization law.

@ Investigation of connections to the dynamics of the satellites in the upper Earth atmosphere
under hyperthermal flow.*

4Beletskii V., Yanshin A. Vliyanie aerodinamicheskikh sil na vrashchatel'noe dvizhenie iskusstvennykh sputnikov (Effect of the

aerodynamic forces on the rotary motion of satellites). Kiev: Naukova Dumka, 1984. P. 187. (in Russian)
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