

2016中俄大学生小卫星创新设计大赛

Sino-Russian University Students Satellite Innovation Design Contest 2016

Nanosatellite aerobrake maneuvering device

Team: SunPulse

Authors:

Valeriia Melnikova, Alexander Borovikov, Koretskii Maksim, Iuliia Smirnova, Ekaterina Timakova

Instructor Names:

Stepan Tenenbaum, Dmitry Rachkin, Nikolay Nerovny, Oleg Kotsur

Problem

CubeSats are in one point

Propulsion system

CubeSats form a constellation

Operation principle

The algorithm to form a constellation

Diagram of Solar Sails deploying and folding

- N serial number of CubeSat
- t Time of deploying start for each sail
- T Sail operation time

Simulation software developed by our team

Ballistics

X"(t)=**F**/m

where **X** – coordinates vector; m – mass of CubeSat; **F=Fg+Fa+Fs** – net force vector, consist of:

Fg – gravity force of the Earth vector (compression of the Earth were taken into account - the second zonal harmonic),

Fa – atmospheric drag force (state standard specification GOST R 25645.166-2004, $F_{10,7} = 100$ sfu),

Fs – solar radiation force.

Evolution in time of the angles between <u>8 spacecrafts</u> with the <u>height of the orbit 450 km</u> and <u>sail area – 1 m²</u> (machine time – 12 hours)

Influence of orbit height for the period of deploying (sail area $- 0.5 \text{ m}^2$)

Influence of the sail area for the period of deploying (height – 450 km)

Technical features

Mass, kg	0,30
Dimensions, mm (sail is folded)	90 x 96 x 38
Sail max length, m (two blades total)	20
Sail max width, mm	76
Average energy consumption	0
Energy consumption during sail deploying/folding	1,2 W (up to 15 min)

The unit withstand static and dynamic loads during a launch with safety factor >4

10

Avionics

Specifications :

- Regulated power(3,3; 5,0 V) for internal circuits
- Control of all operating modes of a sail
- Full-redundancy
- One failure in any component tolerance
- Unit control by I2C bus
- Telemetry/sail status by I2C bus
- Sail deploying/folding is done by commands from groundstations throw CubeSat radio

Motor drives

- Stepper bipolar motors are used for sail deploying/folding
- Typical H-bridge motors drivers realized, but cold redundant
- Fails are detected by sensing bobbins rotation

A DESCRIPTION OF TAXABLE PARTY OF TAXABL

					1		
Analogs and our advantages							
	Criteria for comparing	BMSTU Solar Sail Unit	ClydeSpace Pulsed Plasma Thruster	Micro- space micropro- pulsion system			
-							
	Technology	Thin-filmed construction	Electric pulse thrusters	MEMS cold gas thruster			
	Mass	0,30 kg	0,28 kg	0,30 kg			
	Energy	Average: 0	2,7 W	2 W	Low energy		
Ability to	consumption	During sail deploying:			consumption		
deorbit the		(1,5 W) up to 15 min					
spacecraft in a	Total Impulse	-	42 N*s	40 N*s			
fully passive mode	Delta V (for 3U CubeSat)	-	10,5 m/s	10,0 m/s	Low cost		
	Operation	Continuous micro	40x10 ⁻⁶ N*s	Continuous thrust	compared to		
	features	thrust	impulses with		conventional		
			1Hz frequency		propulsion		
	Cost	(3 k\$)	15 k\$	≈ 90 k\$	systems		
And more ever	~ .				595101115		

And more over:

- Absence of consumable materials (fuel);
- Simple design and therefore higher reliability;
- Using primary Russian electronic components;
- Long-term benefits (Solar Sail technology).

Economic benefit

Cost part	BMSTU Solar Sail Unit	ClydeSpace Pulsed Plasma Thruster	Microspace micropropulsion system	Satellite for factor Satellite m Power Number of satellites in constellati
Device cost	3 k\$	15 k\$	90 k\$	Orbit Satellites p in orbit
Time of orbit phasing	0,18 year	0,055 year	≈ 0 year	Operating Launch typ
Cost of satellite operation time losses	11,8 k\$ ¹⁾	3,6 k\$	0 k\$	C _{TIME} =
Total Cost:	14,8 k\$	18,6 k\$	90 k\$	C _{SAT} = 2 develo
Mission benefit	75,2 k\$ ¹⁾	71,4 k\$	0 k\$	cost (B C _{launch} : cost (D

1) Conservative estimation. Really CubeSats payloads will be out of operation for only 1-2 weeks (only when Solar Sail is deployed). <u>Operation time looses will decrease significantly</u>

Satellite form factor	CubeSat 3U	
Satellite mass	4 kg	
Power	10 W	
Number of satellites in constellation	4	
Orbit	Sun synchronous orbit 500km	
Satellites position in orbit	In orbit plane with phasing angles: 0°, 90°, 180°, 270°	
Operating life	5 years	
Launch type	Piggy back launch with main payload - Earth observation satellite	

$$C_{TIME} = (C_{SAT} + C_{launch}) / T_{LIFE}$$

 $C_{SAT} = 200k$ \$ – satellite development and production cost (BMSTU expert estimation) $C_{launch} = 130k$ \$ - satellite launch cost (DNEPR rocket launch provider)

T_{LIFE} – satellite operation time

15

Conclusions

- The work proved the feasibility and technological competitive of forming a satellite constellation with solar sail
- The algorithm and mathematical model for ballistic simulation are developed
- The Solar Sail unit for CubeSats was developed, that can:
 - Form a constellation
 - Reduce the waste satellites
- Our Solar Sail Unit withstand static and dynamic loads during a launch on typical launch vehicle
- Economics estimates have shown that our solution for CubeSat orbit constellation forming can be competitive

Perspective

- We made a mock-up and it's testing is planned soon
- The next step for this technology is flight proving and demonstration
- We will be ready to flight in one year and started to find opportunity for a launch

Thanks to:

organization committee, BMSTU, labor union of students, BMSTU YSC "Youth Space Center", SM-2 "Aerospace Systems" department, SM-12 "Technology of Manufacturing for Aerospace" department and A.N. Korolev.

And thanks everybody, who is here today, for your attention!